From discrete microscopic models to macroscopic models and applications to traffic flow.

Nicolas Forcadel
Laboratoire de Mathématique de l’INSA de Rouen
Joint work with W. Salazar
4ème réunion de l’ANR HJnet

19 mars 2015
Plan

1. Motivations
2. Homogenization result
3. Idea of the proof
Plan

1. Motivations

2. Homogenization result

3. Idea of the proof
Microscopic traffic flow model

- Discrete model of traffic:

\[
\dot{U}_j(t) = V \left(U_{j+1}(t) - U_j(t) - \frac{l_{j+1} + l_j}{2} \right).
\] (1)

- \(U_j \): position of the vehicle \(j \).
- \(V \): Optimal velocity function (OVF) of the driver.
Microscopic traffic flow model

- Discrete model of traffic:

\[
\dot{U}_j(t) = V\left(U_{j+1}(t) - U_j(t)\right).
\]

- \(U_j\): position of the vehicle \(j\).
- \(V\): Optimal velocity function (OVF) of the driver.
Optimal velocity function

\[V \]

\[V_{max} \]

\[0 \quad h_0 \quad h_{max} \quad h \]
Goal: Describe the traffic in term of density of vehicles, i.e. passing from the microscopic model to a macroscopic one.

LWR (Lighthill, Whitham 1955; Richards 1956) macroscopic model:

$$\rho_t + (\rho v(\rho))_x = 0$$

where v is the average speed of vehicles, ρ is the density.
Some existing results

- 1 single road, first order model: [Di Francesco, Rosini], [NF, Imbert, Monneau]
- 1 single road, second order model, different type of drivers: [NF, Salazar]
- Perturbation at macroscopic level: [Galise, Imbert, Monneau]
A model with a perturbation

\[\dot{U}_j(t) = V \left(U_{j+1}(t) - U_j(t) \right) \phi(U_j(t)). \] (2)

with

\[\phi(x) = \begin{cases}
1 & \text{if } x \in \mathbb{R} \setminus B(0, r) \\
\mu(x) & \text{if } x \in B(0, r),
\end{cases} \]

and \(\phi(x) \geq 0 \).
A model with a perturbation

perturbation: radius = r
Rescailing

perturbation: radius = εr
Passing to the limit: a model with junction

Some references: [Achou, Camilli, Cutri, Tchou], [Imbert, Monneau, Zidani], [Imbert, Monneau],
Given $H : \mathbb{R} \to \mathbb{R}$ decreasing on $]-\infty, p_0]$ and increasing on $[p_0, +\infty[$, $A \in \mathbb{R}$ and $F_A : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we consider the problem

$$\begin{cases}
 u_t + H(u_x) = 0 & \text{on } (0, +\infty) \times \mathbb{R} \setminus \{0\} \\
 u_t + F_A(u_x(t, 0^-), u_x(t, 0^+)) = 0 & \text{on } (0, +\infty) \times \{0\}
\end{cases}$$

with

$$F_A(p^-, p^+) = \max(A, H^+(p^-), H^-(p^+)).$$
Definition (Definition of the solution on the junction)

We denote $J := (0, +\infty) \times \mathbb{R}$, $J^+ := (0, +\infty) \times (0, +\infty)$ and $J^- := (0, +\infty) \times (-\infty, 0)$ and

$$C^2(J) = \{ \varphi \in C(J), \text{ the restriction of } \varphi \text{ to } J^+ \text{ and to } J^- \text{ are } C^2 \}.$$

An usc (resp. lsc) function $u : [0, +\infty) \times \mathbb{R} \to \mathbb{R}$ is a viscosity sub-solution (resp. super-solution) of (3) if for all $(t, x) \in J$ and for all $\varphi \in C^2(J)$ such that $u - \varphi$ reaches a local maximum (resp. minimum) at (t, x), we have

$$\varphi_t(t, x) + H(\varphi_x(t, x)) \leq 0 \quad (\text{resp. } \geq 0) \quad \text{if } x \neq 0,$$

$$\varphi_t(t, x) + F_A(\varphi_x(t, 0^-), \varphi_x(t, 0^+)) \leq 0 \quad (\text{resp. } \geq 0) \quad \text{if } x = 0.$$

(4)
Another definition at the junction

Motivations
Homogenization result
Idea of the proof

\[p - p^+ + A \]

N. Forcadel
Homogenization for traffic flow models
Proposition (Equivalent definition of the solution at the junction)

In the previous definition, if $x = 0$, we get an equivalent definition with test functions φ satisfying

$$\varphi(t, x) = \psi(t) + p^- x 1_{\{x \leq 0\}} + p^+ x 1_{\{x \geq 0\}},$$

with $\psi \in C^1(0, +\infty)$.
Plan

1. Motivations
2. Homogenization result
3. Idea of the proof
Injecting the system of ODE in a PDE

\[\rho(t, y) = -\left(\sum_{i \geq 0} H(y - U_i(t)) + \sum_{i < 0} (-1 + H(y - U_i(t))) \right) \]
Rescalling

\[\rho^\varepsilon(t, y) = \varepsilon \rho\left(\frac{t}{\varepsilon}, \frac{x}{\varepsilon}\right) \]
Passing to the limit

\[\rho^\varepsilon \rightarrow \rho^0 \]
Theorem (NF, Salazar)

Assume that

\[U_i(0) + h_0 \leq U_{i+1}(0). \]

Then, there exists \(\overline{A} \) and \(\overline{H} \) such that \(\rho^\varepsilon \rightarrow u^0 \) with \(u^0 \) solution of

\[
\begin{cases}
 u^0_t + \overline{H}(u^0_x) = 0 & \text{for } (t, x) \in (0, +\infty) \times \mathbb{R} \setminus \{0\} \\
 u^0_t + F_A(u^0_x(t, 0^-), u^0_x(t, 0^+)) = 0 & \text{for } (t, x) \in (0, +\infty) \times \{0\} \\
 u^0(0, x) = u_0(x) & \text{for } x \in \mathbb{R},
\end{cases}
\]

Moreover, \(-1/h_0 =: -k_0 \leq u^0_x \leq 0 \) and for \(p \in [-k_0, 0] \), we have

\[\overline{H}(p) = -V \left(\frac{-1}{p} \right) |p|. \]
Effective hamiltonian

\[H_0 - p_0 \]

\[\overline{H} \]

\[\overline{H} \]

\[H_0 \]

\[p \]

\[-k_0 \]

\[p_0 \]

\[0 \]
Extended effectif hamiltonian

\[H(p_0, 0) - \kappa_0 \]

N. Forcadel
Homogenization for traffic flow models
Plan

1. Motivations
2. Homogenization result
3. Idea of the proof
Injection of the system of ODE in a PDE

The function ρ^ε satisfies

$$
\begin{cases}
 u_t^\varepsilon + M^\varepsilon \left[\frac{u^\varepsilon(t, .)}{\varepsilon} \right] (x) \cdot \phi \left(\frac{x}{\varepsilon} \right) \cdot |u_x^\varepsilon| = 0 \\
 u^\varepsilon(0, x) = u_0(x).
\end{cases}
$$

where M^ε is a non-local operator defined by

$$
M^\varepsilon[U](x) = \int_{-\infty}^{+\infty} J(z) E(U(x + \varepsilon z) - U(x)) \, dz - \frac{3}{2} V_{max},
$$

and with

$$
E(z) = \begin{cases}
 0 & \text{if } z > 0 \\
 1/2 & \text{if } -1 < z \leq 0 \\
 3/2 & \text{if } z \leq -1,
\end{cases}
$$

and $J = V'$ on \mathbb{R}.

N. Forcadel Homogenization for traffic flow models
Proof of convergence far from the junction

We want to show that $\bar{\rho} = \lim \sup^* \rho^\varepsilon$ is a sub solution of the limit problem. Let φ such that $\bar{\rho} - \varphi$ reaches a maximum at (\bar{t}, \bar{x})

- If $\bar{x} \neq 0$ the proof is rather classical (see [NF, Imbert, Monneau]).
 We set $\varphi^\varepsilon(x, t) = \varphi(x, t) + \varepsilon v(x/\varepsilon)$ with v (corrector far from the junction) solution of

$$
\left(\int_{\mathbb{R}} J(z) E \left(v(x + z) - v(x) + pz \right) dz - \frac{3}{2} V_{\text{max}} \right) \cdot |v_x + p| = \overline{H}(p),
$$

and $p = \varphi_x(\bar{t}, \bar{x})$. Classically, we get that φ^ε is a super-solution of the same problem as ρ^ε and we get the result using the comparison principle.
We want to show that \(\bar{\rho} = \lim \sup^* \rho^\varepsilon \) is a sub solution of the limit problem. Let \(\varphi \) such that \(\bar{\rho} - \varphi \) reaches a maximum at \((\bar{t}, \bar{x})\).

- If \(\bar{x} = 0 \), then \(\varphi(t, x) = \psi(t) + p^- x 1\{x \leq 0\} + p^+ x 1\{x \geq 0\} \).

 We set
 \[
 \varphi^\varepsilon = \psi(t) + w^\varepsilon(x)
 \]

with \(w^\varepsilon(x) = \varepsilon w\left(\frac{x}{\varepsilon}\right) \) and \(w \) solution of

\[
M[w](x).\phi(x).|w_x| = \overline{A} \quad \text{for } x \in \mathbb{R}
\]

such that \(w^\varepsilon \rightarrow p^- x 1\{x \leq 0\} + p^+ x 1\{x \geq 0\} \).

Classically, \(\varphi^\varepsilon \) is a super-solution of the same problem as \(\rho^\varepsilon \) and we get the result using the comparison principle.
Motivations
Homogenization result
Idea of the proof

Difficulty

How to construct w solution of

$$M[w](x).\phi(x).|w_x| = \lambda \quad \text{for } x \in \mathbb{R}$$

such that

$$w^\varepsilon \to p^- x 1\{x \leq 0\} + p^+ x 1\{x \geq 0\}.$$
Truncated cell problem

- Idea of [Achdou, Tchou] and [Galise, Imbert, Monneau]: construct a corrector on a bounded domain with appropriate boundary condition and pass to the limit.
Truncated cell problem

- Idea of [Achdou, Tchou] and [Galise, Imbert, Monneau]: construct a corrector on a bounded domain with appropriate boundary condition and pass to the limit.
- For \(r \leq R \ll l \), we consider the truncated cell problem

\[
\begin{align*}
G_R \left(x, [w_{l,R}^l], w_{x,R}^l \right) &= \lambda_{l,R} \quad \text{if } x \in (-l, l) \\
H^- (w_{l,R}^l) &= \lambda_{l,R} \quad \text{if } x = -l \\
H^+ (w_{l,R}^l) &= \lambda_{l,R} \quad \text{if } x = l,
\end{align*}
\]

with

\[
G_R(x, U, q) = \psi_R(x) \cdot \phi(x) \cdot M[U](x) \cdot |q| + (1 - \psi_R(x)) \cdot \overline{H}(q),
\]

and \(\psi_R \in C^\infty(\mathbb{R}, [0, 1]) \), such that

\[
\psi_R \equiv \begin{cases}
1 & \text{on } [-R, R] \\
0 & \text{outside } [-R - 1, R + 1],
\end{cases}
\]
For $\delta > 0$, we consider

\[
\begin{align*}
\delta v^\delta + G_R (x, [v^\delta], v^\delta) &= 0 & \text{for } x \in (-l, l) \\
\delta v^\delta + \overline{H^-}(v^\delta_x) &= 0 & \text{for } x \in \{-l\} \\
\delta v^\delta + \overline{H^+}(v^\delta_x) &= 0 & \text{for } x \in \{l\}
\end{align*}
\]
Approximated truncated cell problem

- For $\delta > 0$, we consider

\[
\begin{align*}
\delta v^\delta + G_R(x, [v^\delta], v^\delta) &= 0 \quad \text{for } x \in (-l, l) \\
\delta v^\delta + H^-(v^\delta_x) &= 0 \quad \text{for } x \in \{-l\} \\
\delta v^\delta + H^+(v^\delta_x) &= 0 \quad \text{for } x \in \{l\}
\end{align*}
\]

- v^δ is not Lipschitz continuous BUT

\[-k_0(x - y) - 1 \leq v^\delta(x) - v^\delta(y) \leq 0 \quad \text{for } x \geq y.\]
Approximated truncated cell problem

- For $\delta > 0$, we consider

\[
\begin{cases}
\delta v^\delta + G_R (x, [v^\delta], v^\delta) = 0 & \text{for } x \in (-l, l) \\
\delta v^\delta + \overline{H}_- (v^\delta_x) = 0 & \text{for } x \in \{-l\} \\
\delta v^\delta + \overline{H}_+ (v^\delta_x) = 0 & \text{for } x \in \{l\}
\end{cases}
\]

- v^δ is not Lipschitz continuous BUT

\[-k_0 (x - y) - 1 \leq v^\delta(x) - v^\delta(y) \leq 0 \quad \text{for } x \geq y.\]

- This implies that there exists m^δ uniformly Lipschitz continuous such that

\[|v^\delta(x) - m^\delta(x)| \leq C \quad \text{for all } x \in [-l, l].\]
For $\delta > 0$, we consider

\[
\begin{cases}
\delta v^\delta + G_R \left(x, [v^\delta], v^\delta \right) = 0 & \text{for } x \in (-l, l) \\
\delta v^\delta + \overline{H}^- (v^\delta_x) = 0 & \text{for } x \in \{-l\} \\
\delta v^\delta + \overline{H}^+ (v^\delta_x) = 0 & \text{for } x \in \{l\}
\end{cases}
\]

v^δ is not Lipschitz continuous BUT

\[-k_0(x - y) - 1 \leq v^\delta(x) - v^\delta(y) \leq 0 \quad \text{for } x \geq y.\]

This implies that there exists m^δ uniformly Lipschitz continuous such that

\[|v^\delta(x) - m^\delta(x)| \leq C \quad \text{for all } x \in [-l, l].\]

This allows us to pass to the limit as $\delta \to 0$ (the limit $l \to +\infty$ and $R \to +\infty$ are easier).
Theorem

We denote by S the set of functions w such that there exists a Lipschitz continuous function such that $|w - m| \leq C$. Then

$$\overline{A} = \inf \{ \lambda, \text{ there exists a corrector } w \in S \}.$$

Moreover

$$0 \geq \overline{A} \geq \min_{p \in \mathbb{R}} \overline{H}(p).$$
Conclusions and Perspectives

Conclusions:
- Homogenization results for discrete traffic flow models
- This allows to model microscopic phenomena.

Perspectives:
- Homogenization for second order models, different type of drivers
- Microscopic perturbation depending on time (red light for example)
- Homogenization on networks
- Numerical computation of \overline{A}
- Homogenization in random media
References

N. Forcadel et W. Salazar, *A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow*, hal-01097085, (2014).